

Ministry of Higher Education and

Scientific Research

 University of Diyala

College of Engineering

Electronic Engineering Department

Design & Simulation of low Hardware

Computational Cost Multiplier

A PROJECT

Submitted to the Electronic Engineering Department College of

Engineering Diyala University in partial fulfillment of the

Requirements for the Degree of Bachelor of Science in Electronics

Engineering

By

 Ashti Yadallah

Nawras Hamza

Supervised By

Dr. Qahtan Khalaf Omran

 1437 May 2016

 وزارة التعميم العالي والبحث العممي
 جامعة ديالى
 كمية الهندسة

 قسم الهندسة الالكترونية

 تصميم ومحاكاة كمفة الأجهزة المنخفظة الحسابية

 مشروع مقدم إلى قسم الهندسة الالكترونية

متطمبات الحصول عمى درجة البكالوريوس في جامعة ديالى كمية الهندسة كجزء من
 في الهندسة الالكترونية

 من قبل

 نورس حمزة& آشتي يدالله

 بإشراف

 الدكتور قحطان خمف عمران

 1437 2016

1

CHAPTER I

INTRODUCTION

1.1 Binary Multiplier Background

Multipliers are key components of many high performance systems such as

FIR filters, microprocessors, digital signal processors, etc [1]. A system

performance is generally determined by the performance of the multiplier

because the multiplier is generally the slowest element in the system

furthermore, it is generally the most area consuming, hence, optimizing the

speed and area of the multiplier is a major design issue. However, area and

speed are usually conflicting constraints, so that are improving speed result

mostly in large areas. As a result, whole spectrums of multiplier with

different area-speed constraints are designed with fully parallel processing

or with fully digit serial processing where single digits consisting

performance in both of several bits are operated on. These multipliers have

low speed and moderate area. However, the growing market for fast

floating-point co-processors, digital signal processing chips, and graphics

processors has created a demand for high speed, area–efficient multipliers.

Current architectures range from, small, low performance shift and add

multipliers to large, high performance array and tree multipliers.

Conventional, linear array multipliers achieve high performance in regular

structures, but require large amounts of silicon. Tree structures achieve

even higher performance than linear array, but the Tree interconnection is

more complex and less regular, making them even larger than linear arrays.

Ideally, one would want the speed benefits of a tree structure, the regularity

of an array multiplier, and the small size of a shift and add multiplier.

2

 The multiplier plays an important role in today’s digital signal

processing and various other applications. With advances in technology,

many researchers have tried and are trying to design multipliers which offer

either of the following design targets – high speed, low power

consumption, hence the less area or even a combination of them in one

multiplier thus making them suitable for various high speed, low power and

compact VLSI implementation.

1.2 Application of Multiplier

Multiplication is one of the basic functions used in digital signal processing

(DSP). It can be found in many DSP applications such as:

1. Vector product , convolution ,filtering and frequency analysis

2. Matrix multiplication

3. Weighted sums required in many DSP such as (neural network

,filtering ,etc)

4. Speed processing , loud speaker equalization ,echo cancelation ,

adaptive noise cancelation ,and various communication application

including software defend radio (SDR) and so on

5. Microprocessors IIR& FIR digital filters

For example an 8 bits are needed in image compression .Typically,

we see 16 bit multipliers used for digital signal processing and 64 bit

multipliers used in microprocessors many current DSP applications are

targeted at portable, battery-operated systems, so that power dissipation

becomes one of the primary design constraints. Since multipliers are rather

complex circuits and must typically operate at a high system clock rate,

3

reducing the delay of a multiplier is an essential part of satisfying the

overall design.

1.3 Multiplication Techniques

Multiplication is a mathematical operation that at its simplest is an

abbreviated process of adding an integer to itself a specified number of

times. A number (multiplicand) is added to itself a number of times as

specified by another number (multiplier) to form result (product) as shown

in Figure 1.1. The circuit which is performing the multiplication process

named a multiplier.

Figure 1.1 binary multiplication

The common multiplication method is “add and shift” algorithm. In parallel

multipliers number of partial products to be added is the main parameter

4

that determines the performance of the multiplier. To reduce the silicon

area (number of utilized logic gates), a serial processing has been used

which is resulting in low speed performance. On the other hand “serial-

parallel” multipliers compromise speed to achieve better performance for

area, speed and power consumption. The selection of a parallel or serial

multiplier actually depends on the nature of the application.

 In this project we investigate fully parallel and fully serial

multiplication algorithms by design and simulation fully parallel and fully

serial multiplier and then observe their performance in terms of power

consumption, logic utilization and speed.

5

CHAPTER II

MULTIPLICATION PROCESS

2.1 Multiplier Basic Operation

 For the multiplication of an n-bit multiplicand with an m-bit multiplier, m

partial products are generated and product formed is n + m bits long [2].

To perform N -bit by N-bit multiplication the N-bit multiplicand A is

multiplied by N-bit multiplier B to produce product. The unsigned binary

numbers A and B can be expressed as:

 ∑

 ∑

The product of A and B is P and it can be written in the following form

 ∑ ∑

An n*n multiplier requires n (n-1) ADDERS and n
2
 AND gates.

Multiplication schemed used in digital systems are quite similar to pencil-

and-paper multiplication. An array of partial products is found first, and

these are then added to generate the product. Figure 2.1 shows a simple

numerical example of the multiplication. As shown in the diagram, the

first partial product is formed by multiplying 1110 by 0; the second partial

product is formed by multiplying 1110 by 1, and so on. The multiplication

of two bits produces a 1 if both bits are 1; otherwise it produces a 0. The

summation of the partial products is accomplished by using full adders. In

general, the multiplication of an m-bit multiplicand X (xm . . . x1 x0) by an n-

bit multiplier Y (yn1 . . . y1 y0) results in an (m n)-bit product. Each of the

2.1

2.2

2.3

6

m n 1-bit products xi yj may be generated by a 2-input AND gate; these

products are then added by an array of full address. Figure 2-2(a) shows a

4-bit by 3-bit multiplier circuit.

 Let us multiply x3x2x1x0 0110(610) by y2y1y0 101(510) using the

multiplier circuit of Figure2-2(a). The outputs of the AND gates and the

full adders in the multiplier circuit corresponding to the applied input

values are recorded in Figure2-2 (b). Note that the outputs of the AND

gates form the partial products and the outputs of the full adders form the

partial sum during the multiplication process. The final output pattern is p6

p5 p4 p3 p2 p1 p0 0011110 (i.e., 3010), which is the expected result. One of the

problems in performing multiplication using this scheme is that when many

partial products are to be added, it becomes difficult to handle the carries

generated during the summation of partial products.

Figure 2.1 Binary multiplication examples.

7

Figure 2.2 (a) A 4-bit by 3-bit multiplier circuit.

8

Figure 2.2 (b) Multiplication of 6 by 5.

9

CHAPTER II

ARRAY MULTIPLIER DESIGN

3.1 Introduction

In this chapter an 4×4 bit unsigned binary array (parallel)

multiplier is designed and realized using the Altera FPGA device

(Stratix II GX: EP2SGX30CF780C3). As mentioned before a

fully parallel is used to achieve high speed at the expense of high

area and power consumption. Qurtus II 11.0 software is used as a

synthesis tool. The ModelSim Altera 6.6d is used as verification

tools.

Tools used:

Simulation Software: QURTUS II 11.0 is used for design and

implementation and ModelSim Altera 6.6d is used for modeling

and simulation.

3.2 Design 4x4 bit parallel multiplier

Array multiplier is well known due to its regular structure. Multiplier

circuit is based on add and shift algorithm. Each partial product is

generated by the multiplication of the multiplicand with one multiplier bit

using a simple AND gate. The partial product are shifted according to their

bit orders and then added. The addition can be performed with normal carry

11

propagate adder. N-1 adders of M-bits size are required where N and M are

the multiplier, and multiplicand length respectively.

Figure 3.1 Array binary multiplier (parallel multiplier).

As shown in the Figure 3.1 the structure of multiplier include three basic

component AND gate, Half adder (HA) and Full adder (FA). To generate

the partial products AND gate is needed . The partial products then added

using either HA or FA. For the 4x4 bit parallel multiplier design ,we need

4x4 AND gates and 3×4 FA . Note that some of the FA can be replaced by

simple HA when the carry in Cin port is not used for further reduction in

logic gates utilization.

3.2.1 Generation of Partial Products

As mentioned in the previous section , AND gates are used to generate the

Partial Products, PP, If the multiplicand is N-bits and the Multiplier is M-

bits then there is N× M partial product, hence it need N× M AND gates.

For our design, 4×4 AND gates has been used. The way that the partial

11

products are generated or summed up is the difference between the

different architectures of various multipliers.

3.2.2 Half Adder Design

 A half adder is used to add two binary digits together, A and B. It produces

S, the sum of A and B, and the corresponding carry out Co. Although by

itself, a half adder is not extremely useful, it can be used as a building

block for larger adding circuits (FA). One possible implementation is using

two AND gates, two inverters, and an OR gate instead of a XOR gate as

shown in figure 3.2.

Figure 3.2 Half-Adder logic and block diagrams

Half-Adder truth table

12

3.2.2(A) VHDL Code of the Half Adder

A Half Adder can be synthesize using the Qurtus II 11.0 software .The

VHDL code for a simple HA is

Use IEEE.STD_LOGIC_1164.ALL;

Entity HA_AN is

Port(X, Y: IN STD_LOGIC;

Cout, Sum: out STD_LOGIC);

End HA_AN;

Architecture Equation of HA_AN is

Begin

Sum <= Xxor Y;

Cout <= X and Y;

End Equation

Figure 3.3 the half adder in VHDL code

13

3.2.3 Full Adder Design

Another component of the multiplier design is the FA of Figure 3.4. A full

adder is a combinational circuit that performs the arithmetic sum of three

bits: A, B and a carry in, C, from a previous addition, Also, as in the case

of the half adder, the full adder produces the corresponding sum, S, and a

carry out Co. As mentioned previously a full adder may be designed by two

half adders in series as shown below in Figure (2.3)

The sum of A and B are fed to a second half adder, which then adds it to

the carry in C (from a previous addition operation) to generate the final

sum S. The carry out, Co, is the result of an OR operation taken from the

carry outs of both half adders. There are a variety of adders in the literature

both at the gate level and transistor level each giving different

performances

Full Adder block diagram Figure 3.4

Full Adder truth table

14

3.2.3(A) Full adder in VHDL

A Full Adder can be synthesize using the Qurtus II 11.0 software .The

VHDL code for a simple FA is

Library IEEE;

Use IEEE.STD_LOGIC_1164.ALL;

Entity FA_AN is

Port(X, Y, and Cin: IN STD_LOGIC;

Cout, Sum: OUT STD_LOGIC);

End FA_AN;

Architecture equations of FA_AN is

Begin

Sum <= X xor Y xor Cin ;

Cout <= (X and Y) or (X and Cin) or (Y and Cin);

End equations;

Figure 3.5 the full adder VHDL code

15

3.3 VHDL code of parallel multiplier

Using the schematic additer in Qurtus II software, it can be realize the final

multiplier structure as shown in Figure 3.6 by combining the AND gates,

HA, and FA blocks.

Figure 3.6 the schematic diagram of 4×4 array multiplier

16

The final VHDL code o the array multiplier is

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

LIBRARY work;

ENTITY AN_MULT_PR IS

 PORT

 (

 Y0: IN STD_LOGIC;

 X0: IN STD_LOGIC;

 X1: IN STD_LOGIC;

 X2: IN STD_LOGIC;

 X3: IN STD_LOGIC;

 Y1: IN STD_LOGIC;

 Y2: IN STD_LOGIC;

 Y3: IN STD_LOGIC;

 Z0: OUT STD_LOGIC;

 Z1: OUT STD_LOGIC;

 Z2: OUT STD_LOGIC;

 Z3: OUT STD_LOGIC;

 Z4: OUT STD_LOGIC;

 Z5: OUT STD_LOGIC;

 Z6: OUT STD_LOGIC;

 Z7: OUT STD_LOGIC

);

END AN_MULT_PR;

ARCHITECTURE bdf _type OF AN_MULT_PR IS

17

COMPONENT fa _an

 PORT(X: IN STD_LOGIC;

 Y: IN STD_LOGIC;

 Cin: IN STD_LOGIC;

 Cout: OUT STD_LOGIC;

 Sum: OUT STD_LOGIC

);

END COMPONENT;

COMPONENT ha_an

 PORT(X: IN STD_LOGIC;

 Y: IN STD_LOGIC;

 Cout: OUT STD_LOGIC;

 Sum: OUT STD_LOGIC

);

END COMPONENT;

SIGNAL SYNTHESIZED_WIRE_0: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_1: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_2: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_3: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_4: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_5: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_6: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_7: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_8: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_9: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_10: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_11: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_12: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_13: STD_LOGIC;

18

SIGNAL SYNTHESIZED_WIRE_14: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_15: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_16: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_17: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_18: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_19: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_20: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_21: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_22: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_23: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_24: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_25: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_26: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_27: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_28: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_29: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_30: STD_LOGIC;

SIGNAL SYNTHESIZED_WIRE_31: STD_LOGIC;

BEGIN

b2v_inst: fa _an

PORT MAP(X => SYNTHESIZED_WIRE_0,

 Y => SYNTHESIZED_WIRE_1,

 Cin => SYNTHESIZED_WIRE_2,

 Cout => SYNTHESIZED_WIRE_20,

 Sum => SYNTHESIZED_WIRE_7);

b2v_inst1: ha _an

PORT MAP(X => SYNTHESIZED_WIRE_3,

 Y => SYNTHESIZED_WIRE_4,

 Cout => SYNTHESIZED_WIRE_2,

19

 Sum => Z1);

SYNTHESIZED_WIRE_5 <= Y1 AND X3;

b2v_inst11: ha _an

PORT MAP(X => SYNTHESIZED_WIRE_5,

 Y => SYNTHESIZED_WIRE_6,

 Cout => SYNTHESIZED_WIRE_15,

 Sum => SYNTHESIZED_WIRE_12);

SYNTHESIZED_WIRE_8 <= Y2 AND X0;

SYNTHESIZED_WIRE_10 <= Y2 AND X1;

SYNTHESIZED_WIRE_13 <= Y2 AND X2;

SYNTHESIZED_WIRE_16 <= Y2 AND X3;

b2v_inst16: ha _an

PORT MAP(X => SYNTHESIZED_WIRE_7,

 Y => SYNTHESIZED_WIRE_8,

 Cout => SYNTHESIZED_WIRE_11,

 Sum => Z2);

b2v_inst17: fa _ an

PORT MAP(X => SYNTHESIZED_WIRE_9,

 Y => SYNTHESIZED_WIRE_10,

 Cin => SYNTHESIZED_WIRE_11,

 Cout => SYNTHESIZED_WIRE_14,

 Sum => SYNTHESIZED_WIRE_21);

b2v_inst18: fa_an

PORT MAP(X => SYNTHESIZED_WIRE_12,

 Y => SYNTHESIZED_WIRE_13,

 Cin => SYNTHESIZED_WIRE_14,

 Cout => SYNTHESIZED_WIRE_17,

 Sum => SYNTHESIZED_WIRE_23);

b2v_inst19: fa _an

21

PORT MAP(X => SYNTHESIZED_WIRE_15,

 Y => SYNTHESIZED_WIRE_16,

 Cin => SYNTHESIZED_WIRE_17,

 Cout => SYNTHESIZED_WIRE_29,

 Sum => SYNTHESIZED_WIRE_26);

b2v_inst2: fa _an

PORT MAP(X => SYNTHESIZED_WIRE_18,

 Y => SYNTHESIZED_WIRE_19,

 Cin => SYNTHESIZED_WIRE_20,

 Cout => SYNTHESIZED_WIRE_6,

 Sum => SYNTHESIZED_WIRE_9);

SYNTHESIZED_WIRE_22 <= Y3 AND X0;

SYNTHESIZED_WIRE_24 <= Y3 AND X1;

SYNTHESIZED_WIRE_27 <= Y3 AND X2;

SYNTHESIZED_WIRE_30 <= Y3 AND X3;

b2v_inst24: ha_an

PORT MAP(X => SYNTHESIZED_WIRE_21,

 Y => SYNTHESIZED_WIRE_22,

 Cout => SYNTHESIZED_WIRE_25,

 Sum => Z3);

b2v_inst25: fa_an

PORT MAP(X => SYNTHESIZED_WIRE_23,

 Y => SYNTHESIZED_WIRE_24,

 Cin => SYNTHESIZED_WIRE_25,

 Cout => SYNTHESIZED_WIRE_28,

 Sum => Z4);

b2v_inst26: fa _an

PORT MAP(X => SYNTHESIZED_WIRE_26,

21

 Y => SYNTHESIZED_WIRE_27,

 Cin => SYNTHESIZED_WIRE_28,

 Cout => SYNTHESIZED_WIRE_31,

 Sum => Z5);

b2v_inst27: fa_ an

PORT MAP(X => SYNTHESIZED_WIRE_29,

 Y => SYNTHESIZED_WIRE_30,

 Cin => SYNTHESIZED_WIRE_31,

 Cout => Z7,

 Sum => Z6);

Z0 <= Y0 AND X0;

SYNTHESIZED_WIRE_3 <= Y0 AND X1;

SYNTHESIZED_WIRE_0 <= Y0 AND X2;

SYNTHESIZED_WIRE_18 <= Y0 AND X3;

SYNTHESIZED_WIRE_4 <= Y1 AND X0;

SYNTHESIZED_WIRE_1 <= Y1 AND X1;

SYNTHESIZED_WIRE_19 <= Y1 AND X2;

END bdf_type;

Library IEEE;

Use IEEE.STD_LOGIC_1164.ALL;

Entity FA_AN is

Port(X, Y, Cin: IN STD_LOGIC;

Cout, Sum: OUT STD_LOGIC);

End FA_AN;

Architecture equations of FA_AN is

Begin

Sum <= X xor Y xor Cin;

Cout <= (X and Y) or (X and Cin) or (Y and Cin);

End equations;

22

Library IEEE;

Use IEEE.STD_LOGIC_1164.ALL;

Entity HA_AN is

Port(X, Y: IN STD_LOGIC;

Cout, Sum: out STD_LOGIC);

End HA_AN;

Architecture Equation of HA_AN is

Begin

Sum <= X xor Y;

Cout <= X and Y;

End Equation;

After compilation the synthesis process, we can verify the functionality o

the final design project by observing the RTL view as shown in Figure 3.7.

23

Figure 3.7 RTL view of synthesized 4×4 array multiplier

2
3

24

CHAPTER IV

SERIAL MULTIPLIER DESIGN

4.1 Design of Serial binary multiplier

In this chapter a 4×4 bit serial multiplier for unsigned binary numbers is

designed. Encoded in VHDL code using the Qurtus II 11.0 software and

then simulated by the ModelSim Altera 6.6d. The performance of the

project can be verified and compared with the design architecture presented

in Chapter 4. To illustrate the design procedure a binary numbers 1101

multiply by 1011 shown below is used as example .It is clear that the

binary multiplication requires only shifting and adding. The following

example shows how each partial product is added in as soon as it is formed.

This eliminates the need for adding more than two binary numbers at a time

 1101 (13) Multiplicand

 1011 (11) Multiplier

 1101

 1101

 100111

 Partial products 0000

 100111

 1101

 Product 10001111 (143)

25

The multiplication of two 4-bit numbers requires a 4-bit multiplicand

register, a 4- bit multiplier register, and an 8 bit register for the product.

The product register serves as an accumulate the sum of the partial

products. Instead of shifting the multiplicand left each time before it is

added, as was done in the previous example, it is more convenient to shift

the product register to the right each time.

Figure 4-1 shows a block diagram for such a multiplier. As indicated

by the arrows on the diagram, 4 bit from the accumulator and 4 bit from the

multiplicand register are connected to the adder inputs; the 4 sum bits and

the carry output from the adder are connected back to the accumulator.

Followed by a right shift; if the multiplier bit is 0, the addition is skipped

and only the right shift occurs.

Figure 4.1 block diagram for binary multiplier

26

The adder calculates the sum of its inputs, and when an add signal (Ad)

occurs, the adder outputs are stored in the accumulator by the next rising

clock edge, thus causing the multiplicand to the added to the accumulator.

An extra bit at the left end of the product register temporarily stores any

carry (C4) which is generated when the multiplicand is added to the

accumulator. Note that when ACC is shifted right, the input to port 8 of

ACC must be 0. Then, a following shift will shift the correct value in to bit

7 of ACC. The shift input to ACC is not explicitly shown in Figure 4.1.

Because the lower four bits of the product register are initially unused, we

will store the multiplier in this location instead of in a separate register. As

each multiplier bit is used, it is shifted out the right end of the register to

make room for additional product bits. The load signal loads the multiplier

into the lower four bits of ACC and at the same time clears the upper 4 bits

the shift signal (sh) causes the contents of the product register (including

the multiplier) to be shifted one place to the right when the next rising

clock edge occurs. The control circuit puts out the proper sequence of add

and shift signals after a start signal (st=1) has been received. If the current

multiplier pit (M) is 1, the multiplicand is added to the accumulator

followed by a right shift; if the multiplier bit 0, the addition is skipped and

only the right shit occurs.

27

4.1.1 Design of Control Circuit

The control must be designed to output the proper sequence of add and

shift signals. Figure 4-2 shows a state graph for control circuit. M/Ad

means if M=1, then the output Ad is 1 (and the other output are 0). M'/Sh

means if M' = 1 (M=0), then output Sh is 1 (and other output are 0). In

figure 4-2, S0 is the reset state, and the circuit says in S0 until a start signal

(St=1) is received. This generated a Load signal , which causes the

multiplier to be loaded into the lower 4 bits of the accumulator (ACC) and

the upper 5 bits of ACC to cleared on to the lower 4 bits of the accumulator

(ACC) and the upper 5 bits of ACC to be cleared on the next rising clock

edge . In state S1, the low order bit of the multiplier (M) is tested. If M=1,

an add signal is generated and then, a shift signal is generated in S1, a shift

signal I generated because adding 0 can be omitted. Similarly, in states S3,

28

S5, and S7, M is tested to determine whether to generate an add signal

followed by shift or just a shift signal. A shift signal is always generated at

the next clock time following an add signal (states S2, S4, S6, and S8). After

four shifts have been generated, all four multiplier bits have been

processed, and the control circuit goes to a done state and terminates the

multiplication process.

Figure 4.2 State Graphs for Multiplier Control

Note that the done signal cannot be turned on in state S7 or S8 because the

last shift not occurs until the next active clock edge. The last shift occurs at

the same time the transition to S9 occurs .The control signal Sh enable the

shifting to occur. In general, if a control signal is turned on in state Sn, the

resulting action does not occur until the next active clock edge takes the

circuit to the next state. State S9 could be eliminated if it was acceptable to

turn on the done signal in state S0 when St =0.

St'/0

J

J

\
-/Done

M/Ad

St/Load

-/Sh

M/Ad

-/Sh

M/Ad

-/Sh

-/Sh

M’/Sh

M’/Sh

S1

S2

S3

S4 S5

S6

S7

S8

S9

M’/S

h

M’/Sh
M/Ad

S0

29

4.1.2 Operation of Control Circuit

In section 4.1, we designed a multiplier for unsigned binary number. In the

section we will shows several ways of writing VHDL code to describe the

multiplier operation. As in Fig 4.1 bits from accumulator (ACC) and 4 bit

from the multiplicand register are connected to the adder inputs; the 4 sum

bit and the carry output from the adder are connected back to the

accumulator. When an add signal (Ad) occurs, the adder outputs are loaded

into the accumulator by the next clock pulse, thus, causing the multiplicand

to be add to the accumulator. An extra bit at the left end of the product

register temporarily stores any carry which is generated when the

multiplicand is added to the accumulator. When shift signal (Sh) occurs, all

9bits of ACC are shifted right by the next clock pulse.

4.2 VHDL Code For A binary Multiplier

In this section, we will write a behavioral VHDL model for multiplier

based on the block diagram of Fig 4.1 and state graph of Fig 4.2.This

model will allows as to check out the basic design of the multiplier and

multiplication algorithm before proceeding with a more detailed design.

Because the control circuit has ten states, we have declared an integer in

the range 0 to 9 for the state signal. The signal ACC represents the 9-bit

accumulator output.

Library IEEE;

Use IEEE.STD_LOGIC_1164. ALL;

Use IEEE.STD_LOGIC_ARITH.ALL;

Use IEEE.STD_LOGIC_UNSIGNED.ALL;

31

Entity mult4B is

Port (Clk, St: in std_logic;

Mplier, Mcand: in std_logic_vector (3 downto 0);

Done: out std_logic;

Product: out std_logic_vector (7 downto 0));

End mult4B;

Architecture behave1 of mult4B is

Signal state: integer range 0 to 9;

Signal ACC: std_logic_vector (8 downto 0);

Alias M: std_logic is ACC (0);

Begin

Product<=ACC (7 downto 0);

Process (ClK)

Begin

If Clk'event and Clk='1'then

Case state is

When 0=>

If St='1' then

ACC (8 downto 4) <= "00000";

ACC (3 downto 0) <=Mplier;

State<=1;

End if;

When 1|3|5|7=>

If M='1'then

ACC (8 downto 4) <= ('0'& ACC (7 downto 4)) + Mcand;

State <=State+1;

Else ACC<='0'&ACC (8 downto 1);

State<=state+2;

End if;

31

When 2|4|6|8=>

ACC<='0'&ACC (8 downto 1);

State<=state+1;

When 9=>

State<=0;

End case;

End if;

End process;

Done <= '1'when state =9 else'0';

End behave1;

Figure 4.3 shows the RTL view of the design after the synthesis process is

accomplished using ModelSim Altera simulator.

32

Figure 4.3 RTL view of synthesized serial multiplier

D Q

PRE

ENA

CLR

+

A[4..0]

B[4..0]

ADDER

+

A[2..0]

B[2..0]

ADDER

+

A[3..0]

B[3..0]

ADDER

=

A[3..0]

B[3..0]

EQUAL

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

SEL[3..0]

DATA[15..0]

OUT

MUX

D Q

PRE

ENA

CLR

SEL

DATAA

DATAB

OUT0

MUX21

SEL

DATAA

DATAB

OUT0

MUX21

SEL

DATAA

DATAB

OUT0

MUX21

SEL

DATAA

DATAB

OUT0

MUX21

ACC[8..0]Add0
1' h0 --

1' h0 --

Add1

3' h1 --

Equal0

4' h9 --

Mux0

6' h00 --

1' h0 --

1' h0 --

1' h0 --

1' h0 --

Mux1

6' h00 --

Mux2

6' h00 --

Mux3

6' h00 --

Mux4

6' h00 --

Mux5

6' h00 --

Mux6

6' h00 --

Mux7

6' h00 --

Mux8

6' h00 --

Mux9

7' h00 --

Mux10

7' h00 --

Mux11

7' h00 --

Mux12

7' h00 --

state[3..0]

ACC~[8..0]

5' h00 --

ACC~[17..9]

1' h0 --

1' h1 --

state~[3..0]

4' h8 --

state~[7..4]

Clk

St

Done

Mplier[3..0]

Mcand[3..0]

Product[7..0]

Add2

4' h1 --

CHAPTER V

MULTIPLIERS RESULT

5.1 Parallel Multiplier Result

1. Power dissipation 0.74 mw

2. Clock 412 MHz

3. Combinational ALUTs 28

4. Logic register 16

Fig 5.1 shows decimal multiplication in parallel multiplier and binary

multiplication in parallel multiplier shows in Fig 5.3

3
4

33

Figure 5.1 decimal parallel multiplication (3×10)

3
4

Figure 5.2 decimal parallel multiplication (11×5)

3
5

Figure 5.3 binary parallel multiplication (12×3)

3
6

5.2 Serial Multiplier Result

1. Power dissipation 0.62 mw

2. Clock 524 MHz (clock pulses period≈2 ns)

3. Combinational ALUTs 22

4. Logic registers 13

To calculate the number of clock that depend on multiplier that mean

dependent on ADD or ADD SHIFT

In the example 4-1 the multiplier (1011)

1. The first digit is one (M=1) we need two clock cycle one for add

and the second for shift

2. The second digit is zero (M=0) so we just need one clock cycle

for shift

3. The third digit is 1 (M=1) so we need two clock cycle one for

add and the second for shift

4. The fourth clock is 1 (M=1) so we need two clock cycle one for

add and the second for shift

 And one clock for loading the result two +one +two +two +one

clock =eight clock is the number of clock for example 4-1.

 And to calculate the time of one clock we divide one on number of clock

the result 2ns and to calculate the total number of clock we multiply the

total number of clock in the time for one clock. we conclude that the

maximum number of clock is 9 for multiplier 1111 .and minimum number

of clock is 5 for multiplier 0000 we use the Modelsim to obtain the result

this program used to simulate the circuit do you work or not, and display

37

the result In fig 5.6 the multiplier is 0010 the result in binary and the

number of clock is 6 clock and for example if the multiplier is 1o11 the

number of clock required is 8 clock as shown in fig 5.7 and the result in

decimal number.

38

Figure 5.4 decimal serial multiplication (13)

Clock pulse

No. 8

3
9

Clock pulse

No. 8

4
0

Figure 5.5 binary serial multiplication (13)

Clock

pulse No. 6

4
1

Figure 5.6 decimal serial multiplication (13)

Clock pulse

No. 6

4
2

Figure 5.7 binary serial multiplication (13)

CHAPTER VI

CONCLUTIONS

This project was presented two techniques to be used unsigned binary

multiplier. The aim is to realize simple, low hardware architecture. The

proposed multipliers are analyzed at the RTL level using Modelsim6.6d

simulator. The performance of the two designs are evaluates terms of

speed, logic utilization and power consumption.

According to the report generated by the Quartus II 11.0 soft ware and the

RTL simulation result, we can conclude the following.

1. Array multiplier exhibits high speed performance while it consumes

much power in comparison to the serial bit multiplier. Also the array

multiplier as expected utilizes large number of logic gate in

comparison the serial.

2. Several bit multiplier is running low bit it occupy a low chip area

and consume of little bit power than the parallel multiplier

3. The array multiplier is suitable for the application which is need a

fast processing at the expense of area. While the bit serial is suitable

for low chip area. And the speed is not a critical factor.

6.1 Suggestion for future work

We suggest for future work the following:

1. Design and implementation of signed binary multiplier

2. Design and implementation of fixed width multiplier

3. FPGA based implementation of the proposed design

 43

REFRENCE

[1] B. Nag arjun and poonam Sharma, “design and FPGA Implementation

of a simple time efficient kom multiplier “IOSR journal of Electronic and

communications Engineering 2014 –pp 35.39

[2] P. Meier, R. Rutenbar, and L.R. Carley, “Exploring Multiplier

Architecture and Layout

For Low Power,” IEEE Custom Integrated Circuits Conference 1996, pp.

513-516.

[3] R. Fried, “Minimizing Energy Dissipation in High-Speed Multipliers,”

International

Symposium on Low Power Electronics and Design, 1997

[4] B. Ackland, C.J. Nicol, “High Performance DSPs - What’s Hot and

what’s Not?” International

Symposium on Low Power Electronics and Design, 1998

[5] C.J. Nicol, P. Larsson, “Low Power Multiplication for FIR Filtering,”

International Symposium

On Low Power Electronics and Design, 1997

[6] E.d.Angel, "Low Power Digital Multiplication," in Application Specific

Processors, E.E.

 Swartzlander, ed., Kluwer Academic Publishers, Norwell, Mass, 1997.

[7] E. Musoll and J. Cortadella, “Low-Power Array Multipliers with

Transition-Retaining

[8] P. Meier, R. Rutenbar, and L.R. Carley, “Exploring Multiplier

Architecture and Layout For Low Power,” IEEE Custom Integrated

Circuits Conference 1996.

